Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example:
For
For
num = 5
you should return [0,1,1,2,1,2]
.
Follow up:
- It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
- Space complexity should be O(n).
- Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
給一個正整數,輸出 0 ≤ i ≤ num 的二進制數值 1 的數量,明明很簡單的題目。但是後面的條件說要在 O(n) 解決掉,而不能用到 O(n * sizeof(integer)),所以直覺的寫個 function 用 shift 去計算個別數值 1 的數量並不能滿足條件。只好回歸二進制的特性找線索。
二進制每次+1的時候,就是最後一位 0 變 1 或 1 變 0,每個位數從 1 變成 0 的時候,就往前進一位。
所以 1,2,4,8,16,32,64...在進位之後,低位數就開始循環。列個清單來驗證一下這樣的推論
十進制 | 二進制 | 1 的數量 |
0 | 0000 0000 | 0 |
1 | 0000 0001 | 1 |
2 | 0000 0010 | 1 |
3 | 0000 0011 | 2 |
4 | 0000 0100 | 1 |
5 | 0000 0101 | 2 |
6 | 0000 0110 | 2 |
7 | 0000 0111 | 3 |
8 | 0000 1000 | 1 |
9 | 0000 1001 | 2 |
10 | 0000 1010 | 2 |
11 | 0000 1011 | 3 |
12 | 0000 1100 | 2 |
13 | 0000 1101 | 3 |
14 | 0000 1110 | 3 |
15 | 0000 1111 | 4 |
十進制 | 複製 | 輸出結果 |
0 | 0 | |
1 | 0 0 | 0 1 |
2 | 01 01 | 01 12 |
4 | 0112 0112 | 0112 1223 |
8 | 01121223 01121223 | 01121223 12232334 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | #include <stdio.h> #include <stdlib.h> #include <string.h> int* countBits(int num, int* returnSize) { int s, ss, i; *returnSize = num+1; int * retvals = malloc(sizeof(int) * (num+1)); memset(retvals, 0, sizeof(int)); s=1; retvals[0] = 0; while(s <= num) { if(s*2 > num) { ss = num - s + 1; } else { ss = s; } memcpy(retvals + s, retvals, sizeof(int) * ss); for(i=0;i<ss;i++) { retvals[s+i]++; } s = s<<1; } return retvals; } void main(int argc, char *argv[]) { int * resarr; int rescnt, i; if(2 != argc) { printf("What?\n"); return; } if(atoi(argv[1])) { resarr = countBits(atoi(argv[1]), &rescnt); printf("[%d", resarr[0]); for(i=1; i<rescnt; i++) { printf(",%d", resarr[i]); } printf("]\n"); } else { printf("Oh! Oh!\n"); } } |